Nash–Moser theorem
The Nash–Moser theorem, attributed to mathematicians John Forbes Nash and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to a class of "tame" Fréchet spaces. In contrast to the Banach space case, in which the invertibility of the derivative at a point is sufficient for a map to be locally invertible, the Nash–Moser theorem requires the derivative to be invertible in a neighborhood. The theorem is widely used to prove local uniqueness for non-linear partial differential equations in spaces of smooth functions.
While Nash (1956) originated the theorem as a step in his proof of the Nash embedding theorem, Moser (1966a, 1966b) showed that Nash's methods could be successfully applied to solve problems on periodic orbits in celestial mechanics.
References
- Moser, Jürgen (1966a), "A rapidly convergent iteration method and non-linear partial differential equations. I", Ann. Scuola Norm. Sup. Pisa (3) 20: 265–315, MR0199523, http://www.numdam.org/item?id=ASNSP_1966_3_20_2_265_0
- Moser, Jürgen (1966b), "A rapidly convergent iteration method and non-linear partial differential equations. II", Ann. Scuola Norm. Sup. Pisa (3) 20: 499–535, MR0206461, http://www.numdam.org/item?id=ASNSP_1966_3_20_3_499_0
- Nash, John (1956), "The imbedding problem for Riemannian manifolds", Annals of Mathematics 63 (1): 20–63, doi:10.2307/1969989, JSTOR 1969989, MR0075639 .
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›